As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders.
Compared with traditional low-to-moderate-intensity continuous endurance training, high-intensity interval training (HIIT) and sprint interval training (SIT) are more time-efficient as exercise regimens and produce comparable results in reducing total fat mass, as well as improving cardiorespiratory fitness and insulin sensitivity.
Oxygen consumption (V[Combining Dot Above]O2) was measured continuously during and for 3 hours after exercise. For all conditions, V[Combining Dot Above]O2 was higher than resting control only during the first hour postexercise. Although 3-hour EPOC and total net exercise energy expenditure (EE) after exercise were higher (p = 0.01) for SIE (22.0 ± 9.3 L; 110 ± 47 kcal) compared with SSE (12.8 ± 8.5 L; 64 ± 43 kcal), total (exercise + postexercise) net O2 consumed and net EE were greater (p = 0.03) for SSE (69.5 ± 18.4 L; 348 ± 92 kcal) than those for SIE (54.2 ± 12.0 L; 271 ± 60 kcal).
In conclusion, exercise training induced an improvement in subjective sleep quality in sedentary middleaged adults. Moreover, HIIT-EMS training showed an improvement in objective sleep quality parameters (total sleep time, sleep efficiency and wake after sleep onset) after 12 weeks of exercise intervention.
HIIT revealed a more robust increase in gene transcripts than other exercise modalities, particularly in older adults, although little overlap with corresponding individual protein abundance was noted. HIIT reversed many age-related differences in the proteome, particularly of mitochondrial proteins in concert with increased mitochondrial protein synthesis. Both RT and HIIT enhanced proteins involved in translational machinery irrespective of age. Only small changes of methylation of DNA promoter regions were observed.
The expression of 79 genes was significantly elevated (fold-change >1.2), and that of 73 genes was significantly reduced (fold-change <0.8) after HIIT. Gene ontology analysis of the up-regulated genes revealed that the significantly enriched categories were “glucose metabolism”, “extracellular matrix”, “angiogenesis”, and “mitochondrial membrane”.
コメント